The Foster Lab
  • The Foster Lab
  • How hot will it get? Future of Coral Reefs Historic Climate Change Airborne Particulate Pollution The Boron Isotope pH-proxy Biomineralisation & “Vital Effects” Geochem & CMI
  • Microns2Reefs Palaeocean-CO2.org What Caused the Mid-Pleistocene Transistion? TONIC CFORCE
  • Who Are We?
  • Our Publications
  • Blog
  • Contact & Opportunities

The Foster Lab

  • The Foster Lab/
  • Our Research/
    • How hot will it get?
    • Future of Coral Reefs
    • Historic Climate Change
    • Airborne Particulate Pollution
    • The Boron Isotope pH-proxy
    • Biomineralisation & “Vital Effects”
    • Geochem & CMI
  • Current Projects/
    • Microns2Reefs
    • Palaeocean-CO2.org
    • What Caused the Mid-Pleistocene Transistion?
    • TONIC
    • CFORCE
  • Who Are We?/
  • Our Publications/
  • Blog/
  • Contact & Opportunities/
SST future.jpg

The Foster Lab

home of the B-team

How hot will it get?

Insights from the climates of the past

The Foster Lab

  • The Foster Lab/
  • Our Research/
    • How hot will it get?
    • Future of Coral Reefs
    • Historic Climate Change
    • Airborne Particulate Pollution
    • The Boron Isotope pH-proxy
    • Biomineralisation & “Vital Effects”
    • Geochem & CMI
  • Current Projects/
    • Microns2Reefs
    • Palaeocean-CO2.org
    • What Caused the Mid-Pleistocene Transistion?
    • TONIC
    • CFORCE
  • Who Are We?/
  • Our Publications/
  • Blog/
  • Contact & Opportunities/

Since the industrial revolution the concentration of atmospheric CO2 has increased.  This potent greenhouse gas is already causing demonstrable climate change.  Important insights into exactly how the climate will change in the future in response to increased greenhouse emissions can be gained from looking into the past to those time periods that were warmer than today. 

 

Some eocene foraminifera from Tanzania

Some eocene foraminifera from Tanzania

Eleni Anagnostou doing boron chemistry in the boron lab

Eleni Anagnostou doing boron chemistry in the boron lab

The Joides REsolution - IODP research vessel Image Credit: William Crawford IODP/TAMU

The Joides REsolution - IODP research vessel Image Credit: William Crawford IODP/TAMU

Key Questions

1.  What is the sensitivity of the climate system to CO2 forcing? – how hot will it get in the future?

2. What is the relationship between CO2, ice-volume and sea level? – how high will sea level rise as the major ice sheets melt in the future?

How do we do it?

We use cutting edge analytical techniques to measure the chemical and boron isotopic composition of the calcium carbonate shells of single celled organisms called foraminifera. 

These animals lived in the ancient ocean and their shells now make up deep ocean sediments. Such sediments represent a continuous archive of ancient climate that stretches back continuously for up to 65 million years.

From the chemical and isotopic signals locked up in the shells of these animals we can reconstruct ocean pH (and hence atmospheric CO2 ), ice volume (and hence sea-level) and water temperature (and hence climate). 

Recent Publications

Hollingsworth, E. H., Elling, F. J., Badger, M. P. S., Pancost, R. D., Dickson, A. J., Rees-Owen, R. L., Papadomanolaki, N. M., Pearson, A., Sluijs, A., Freeman, K. H., Baczynski, A. A., Foster, G. L., Whiteside, J. H., and Inglis, G. N., 2024, Spatial and Temporal Patterns in Petrogenic Organic Carbon Mobilization During the Paleocene-Eocene Thermal Maximum: Paleoceanography and Paleoclimatology, v. 39, no. 2, p. e2023PA004773. https://doi.org/10.1029/2023PA004773

Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium, including Foster, G.L. (2023) Towards a Cenozoic history of atmospheric CO2, Science, 382 (6675), eadi577, DOI: 10.1126/science.adi5177

Liu, X., Huber, M., Foster, G.L., Dessler, A., Zhang, Y.G., 2022. Persistent high latitude amplification of the Pacific Ocean over the past 10 million years. Nature Communications 13, 7310, https://www.nature.com/articles/s41467-022-35011-z

Rohling, E.J., Foster, G.L., Gernon, T.M., Grant, K.M., Heslop, D., Hibbert, F.D., Roberts, A.P., Yu, J., 2022. Comparison and Synthesis of Sea-Level and Deep-Sea Temperature Variations Over the Past 40 Million Years. Reviews of Geophysics 60, e2022RG000775, https://doi.org/10.1029/2022RG000775

Brown, R.M., Chalk, T.B., Crocker, A.J., Wilson, P.A., Foster, G.L., (2022) Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity, Nature Geoscience, https://doi.org/10.1038/s41561-022-00982-7. Data here

Babila, T.L., Penman, D.E., Standish, C.D., Doubrawa, M., Bralower, T.J., Robinson, M.M., Self-Trail, J.M., Speijer, R.P., Stassen, P., Foster, G.L., Zachos, J.C. (2022) Surface ocean warming and acidification driven by rapid carbon release precedes Paleocene-Eocene Thermal Maximum, Science Advances, 8, 11, eabg1025, doi: 10.1126/sciadv.abg1025.

Lunt, D.J., Bragg, F., Chan, W.-L. et al. including Foster, G.L. (2021) DeepMIP: Model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data, Climate of the Past, 17, 203-227, https://doi.org/10.5194/cp-17-203-2021

Rohling, E.J., Yu, J., Heslop, D., Foster, G.L., Opdyke, B., Roberts, A.P. (2021) Sea level and deep-sea temperature reconstructions suggest quasi-stable states and critical transitions over the past 40 million years, Science Advances, 7, 26, eabf5326, https://advances.sciencemag.org/content/7/26/eabf5326.abstract

Rae, J.W.B, Zhang, Y-G., Liu, Z., Foster, G.L. Stoll, H.M., (2021) Atmospheric CO2 over the last 66 million years from marine archives, Annual Reviews of Earth and Planetary Sciences, Vol. 49:609-641, https://doi.org/10.1146/annurev-earth-082420-063026

Lear, C.H., Anand, P., Blenkinsop, T., Foster, G.L., Gagen, M., Hoogakker, B., Larter, R.D., Lunt, D.J., McCave, I.N., McClymont, E., Pancost, R.D., Rickaby, R.E.M., Schultz, D.M., Summerhayes, C., Williams, C.J.R., Zalasiewicz, J. (2021) Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate, Journal of the Geological Society, 178, jgs2020-239, https://doi.org/10.1144/jgs2020-239

Tierney, J. E., Poulsen, C. J., Montanez, I., Bhattacharya, T., Feng, R., Ford, H., Hönisch, B., Inglis, G., Petersen, S., Sagoo, N., Tabor, C., Thirumalai, K., Zhu, J., Burls, N., Godderis, Y., Foster, G., Huber, B. T., Ivany, L., Kirtland Turner, S., ... Ge Zhang, Y. (2020). Past climates inform our future. Science, 370(6517), [eaay3701]. https://doi.org/10.1126/science.aay3701

Inglis, G. N., Bragg, F., Burls, N. J., Cramwinckel, M. J., Evans, D., Foster, G. L., Huber, M., Lunt, D. J., Siler, N., Steinig, S., Tierney, J. E., Wilkinson, R., Anagnostou, E., De Boer, A. M., Dunkley Jones, T., Edgar, K. M., Hollis, C. J., Hutchinson, D. K., & Pancost, R. D. (2020). Global mean surface temperature and climate sensitivity of the early Eocene Climatic Optimum (EECO), Paleocene–Eocene Thermal Maximum (PETM), and latest Paleocene. Climate of the Past, 16(5), 1953-1968. [1953]. https://doi.org/10.5194/cp-16-1953-2020

Anagnostou, E., John, E.H., Babila, T.L., Sexton, P.F., Ridgwell, A., Lunt, D.J., Pearson, P.N., Chalk, T.B., Pancost, R.D., Foster, G.L. (2020) The State-dependency of climate sensitivity in the Eocene greenhouse, Nature Communications, 11:4436, https://doi.org/10.1038/s41467-020-17887-x, data tables here, here and here

Sherwood, S., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., Hegerl, G., Klein, S. A., Marvel, K. D., Rohling, E. J., Watanabe, M., Andrews, T., Braconnot, P., Bretherton, C. S., Foster, G. L., Hausfather, Z., Heydt, A. S. V. D., Knutti, R., Mauritsen, T., ... Zelinka, M. D. (2020). An assessment of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics, [e2019RG000678]. https://doi.org/10.1029/2019RG000678

de la Vega, Chalk, T.B., Wilson, P.A., Priya Bysani, R., Foster, G.L. (2020) Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation, Nature Scientific Reports, 10(1), 1-8, https://doi.org/10.1038/s41598-020-67154-8. click here for data

  • The Foster Lab/
  • Our Research/
    • How hot will it get?
    • Future of Coral Reefs
    • Historic Climate Change
    • Airborne Particulate Pollution
    • The Boron Isotope pH-proxy
    • Biomineralisation & “Vital Effects”
    • Geochem & CMI
  • Current Projects/
    • Microns2Reefs
    • Palaeocean-CO2.org
    • What Caused the Mid-Pleistocene Transistion?
    • TONIC
    • CFORCE
  • Who Are We?/
  • Our Publications/
  • Blog/
  • Contact & Opportunities/

The Foster Lab

Atmospheric CO2

Boron Book.JPG

@theFosterlab

@thefosterlab.bsky.social

@TheFosterLab@mas.to

Please consider submiting a paper to Geochemical Perspective Letters - a fully open access community run journal with high impact factor (~5)

LATEST NEWS

Featured
Oct 23, 2024
PhD Topics for Entry September 2025
Oct 23, 2024
Oct 23, 2024
Oct 17, 2023
PhD projects entry September 2024
Oct 17, 2023
Oct 17, 2023
Aug 22, 2023
Rushing to save Coral Reefs
Aug 22, 2023
Aug 22, 2023
Nov 1, 2022
PhD Opportunities @theFosterlab for entry October 2023
Nov 1, 2022
Nov 1, 2022
May 2, 2022
Record breaking CO2 AGAIN
May 2, 2022
May 2, 2022
Oct 18, 2021
PhD opportunities @theFosterlab 2022 Start
Oct 18, 2021
Oct 18, 2021
Oct 4, 2021
Job Vacancy @thefosterlab
Oct 4, 2021
Oct 4, 2021
May 5, 2021
PhD opportunities @theFosterLab start 2021 still available!
May 5, 2021
May 5, 2021
Oct 12, 2020
PhD opportunities @theFosterLab 2021 Start
Oct 12, 2020
Oct 12, 2020
May 14, 2020
CO2 in May 2020 at 417 ppm – highest in at least 2.5 million years
May 14, 2020
May 14, 2020

Get in touch

Thank you!

Powered by Squarespace